Pool estimates using the Rubin Rules
Arguments
- estimate
List. Each element of the list is a vector of pseudo estimates of length \(m\).
- std.error
List. The standard error of the estimates.
- df
Numeric. Indicates the degrees of freedom of the test.
- term
Character. Indicates the names of the estimates.
Details
This function is adapted from the mice::pool()
function.
References
Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and Sons.
Van Buuren, S., Groothuis-Oudshoorn, K., & Robitzsch, A. (2019). Package ‘mice’: multivariate imputation by chained equations. CRAN Repos.
Examples
if (FALSE) {
library(survival)
data(tvtdata2)
list_data_surv <-
replicate(n = 3,
{tvt_matching_date(tvtdata2,date_statrisk = stos,treatna,eos,eos01)},
simplify = F)
list_data_surv <- lapply(list_data_surv, \(di){
di%>%
bind_cols(tvtdata2%>%
select(eos01,fct_2lvl,fct_4lvl,xcov)%>%
slice(tvt_new$id_row))})
list_coxph <- lapply(list_data_surv, \(di){
coxph(Surv(time_eos_tv,state_eos_tv)~treat_tv+xcov,data= di)})
estim <- lapply(list_coxph,coef)
var <- lapply(list_coxph,\(x){sqrt(diag(x$var))})
df <- list_coxph[[1]]$n-length(lestim[[1]])
term <- names(lestim[[1]])
pooling_rubin(estim,var,df,term)
}